Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biomolecules ; 12(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1667042

ABSTRACT

The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.


Subject(s)
Complement System Proteins , Virus Diseases/etiology , Animals , Disseminated Intravascular Coagulation/immunology , Disseminated Intravascular Coagulation/virology , Humans , Liver Failure, Acute/immunology , Liver Failure, Acute/virology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Vector Borne Diseases/immunology , Vector Borne Diseases/virology
2.
Public Health Res Pract ; 30(4)2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-969941

ABSTRACT

Mosquitoes and mosquito-borne disease are a normal part of the Australian summer but the 2019-2020 summer was anything but normal. Above average temperatures and below average rainfall resulted in drought across many parts of New South Wales (NSW), Australia, which then contributed to catastrophic bushfires. However, by late summer, above average rainfall resulted in a dramatic increase in mosquito abundance. While the coronavirus disease 2019 (COVID-19) pandemic unfolded, NSW experienced increased activity of mosquito-borne Ross River virus. All these extreme events created many challenges for managing the pest and the public health risks associated with mosquitoes, from maintenance of mosquito monitoring and control programs through to unique challenges of communicating mosquito bite prevention advice to local communities. There are important lessons to be learned in situations where extreme weather events may influence the risk of mosquito-borne disease through driving changes in the abundance and diversity of mosquito populations, while also influencing the abundance and distribution of native wildlife that represents important local reservoirs of arboviruses. Similarly, supporting the maintenance of mosquito monitoring and management programs while local authorities face competing priorities due to extreme natural disasters and/or public health events is critical.


Subject(s)
COVID-19/epidemiology , Mosquito Vectors/virology , Vector Borne Diseases/epidemiology , Wildfires/statistics & numerical data , Alphavirus Infections/epidemiology , Animals , Disasters , Humans , Mosquito Control , New South Wales/epidemiology , Pandemics , Public Health , Ross River virus , SARS-CoV-2 , Seasons , Vector Borne Diseases/virology , Weather
3.
Sci Rep ; 10(1): 12640, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-690878

ABSTRACT

Aedes-borne diseases, such as dengue and chikungunya, are responsible for more than 50 million infections worldwide every year, with an overall increase of 30-fold in the last 50 years, mainly due to city population growth, more frequent travels and ecological changes. In the United States of America, the vast majority of Aedes-borne infections are imported from endemic regions by travelers, who can become new sources of mosquito infection upon their return home if the exposed population is susceptible to the disease, and if suitable environmental conditions for the mosquitoes and the virus are present. Since the susceptibility of the human population can be determined via periodic monitoring campaigns, the environmental suitability for the presence of mosquitoes and viruses becomes one of the most important pieces of information for decision makers in the health sector. We present a next-generation monitoring and forecasting system for [Formula: see text]-borne diseases' environmental suitability (AeDES) of transmission in the conterminous United States and transboundary regions, using calibrated ento-epidemiological models, climate models and temperature observations. After analyzing the seasonal predictive skill of AeDES, we briefly consider the recent Zika epidemic, and the compound effects of the current Central American dengue outbreak happening during the SARS-CoV-2 pandemic, to illustrate how a combination of tailored deterministic and probabilistic forecasts can inform key prevention and control strategies .


Subject(s)
Aedes/virology , Epidemiological Monitoring , Mosquito Vectors/virology , Vector Borne Diseases/pathology , Animals , Betacoronavirus/isolation & purification , COVID-19 , Climate , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Databases, Factual , Decision Making , Epidemiological Monitoring/veterinary , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Vector Borne Diseases/epidemiology , Vector Borne Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL